Eigensolution Variability of Asymmetric Damped Systems

Show more

References

[1] R. L. Fox and M. P. Kapoor, “Rates of Change of Eigenvalues and Eigenvectors,” AIAA Journal, Vol. 6, No. 12, 1968, pp. 2426-2429. doi:10.2514/3.5008

[2] L. C. Rogers, “Derivatives of Eigenvalues and Eigenvectors,” AIAA Journal, Vol. 11, No. 8, 1970, pp. 943-944. doi:10.2514/3.5795

[3] S. Garg, “Derivatives of Eigensolutions for a General Matrix,” AIAA Journal, Vol. 11, No. 8, 1973, pp. 1191-1194. doi:10.2514/3.6892

[4] R. H. Plaut and K. Huseyin, “Derivative of Eigenvalues and Eigenvectors in Non-Self-Adjoint Systems,” AIAA Journal, Vol. 11, No. 2, 1973, pp. 250-251.
doi:10.2514/3.6740

[5] C. S. Rudisill, “Derivatives of Eigenvalues and Eigenvectors for a General Matrix,” AIAA Journal, Vol. 12, No. 5, 1974, pp. 721-722. doi:10.2514/3.49330

[6] S. Adhikari and M. I. Friswell, “Eigenderivative Analysis of Asymmetric Non-Conservative Systems,” International Journal for Numerical Methods in Engineering, Vol. 51, No. 6, 2001, pp. 709-733. doi:10.1002/nme.186

[7] Q. H. Zeng, “Highly Accurate Modal Method for Calculating Eigenvector Derivative in Viscous Damping Systems,” AIAA Journal, Vol. 33, No. 4, 1995, pp. 746-751.
doi:10.2514/3.12453

[8] Y. J. Moon, B. W. Kim, M. G. Ko and I. W. Lee, “Modified Modal Methods for Calculating Eigenpair Sensitivity of Asymmetric Damped System,” International Journal for Numerical Methods in Engineering, Vol. 60, No. 11, 2004, pp. 1847-1860. doi:10.1002/nme.1025

[9] B. P. Wang, “Improved Approximate Methods for Computing Eigenvector Derivatives in Structural Dynamics,” AIAA Journal, Vol. 29, No. 6, 1992, pp. 1018-1020.

[10] R. B. Nelson, “Simplified Calculation of Eigenvector Derivatives,” AIAA Journal, Vol. 14, No. 9, 1976, pp. 1201-1205. doi:10.2514/3.7211

[11] T. R. Sutter, C. J. Camarda, J. L. Walsh and H. M. Adelman, “Comparison of Several Methods for Calculating Vibration Mode Shape Derivatives,” AIAA Journal, Vol. 26, No. 12, 1989, pp. 1506-1511.
doi:10.2514/3.10070

[12] M. I. Friswell, S. Adhikari, “Derivatives of Complex Eigenvectors Using Nelson’s Method,” AIAA Journal, Vol. 38, No. 12, 2000, pp. 2355-2357. doi:10.2514/2.907

[13] N. Guedria, M. Chouchane and H. Smaoui, “Second-Order Eigensensitivity Analysis of Asymmetric Damped Systems Using Nelson’s Method,” Journal of Sound and Vibration, Vol. 300, No. 3-5, 2007, pp. 974-992.
doi:10.1016/j.jsv.2006.09.003

[14] C. S. Rudisill and Y. Chu, “Numerical Methods for Evaluating the Derivatives of Eigenvalues and Eigenvectors,” AIAA Journal, Vol. 13, No. 6, 1975, pp. 834-837.
doi:10.2514/3.60449

[15] I. W. Lee and G. H. Jung, “An Efficient Algebraic Method for the Computation of Natural Frequency and Mode Shape Sensitivities: Part I, Distinct Natural Frequencies,” Computers and Structures, Vol. 62, No. 3, 1997, pp. 429-435. doi:10.1016/S0045-7949(96)00206-4

[16] I. W. Lee, D. O. Kim and G. H. Jung, “Natural Frequency and Mode Shape Sensitivities of Damped Systems: Part I, Distinct Natural Frequencies,” Journal of Sound and Vibration, Vol. 223, No. 3, 1999, pp. 399-412. doi:
doi:10.1006/jsvi.1998.2129

[17] N. Guedria, H. Smaoui and M. Chouchane, “A Direct Algebraic Method for Eigensolution Sensitivity Computation of Damped Asymmetric Systems,” International Journal for Numerical Methods in Engineering, Vol. 68, No. 6, 2006, pp. 674-689. doi:10.1002/nme.1732

[18] M. Chouchane, N. Guedria and H. Smaoui, “Eigensensitivity Computation of Asymmetric Damped Systems Using an Algebraic Approach,” Mechanical System and Signal Processing, Vol. 21, No. 7, 2007, pp. 2761-2776.
doi:10.1002/nme.1732

[19] Z. H. Xu, H. X. Zhong, X. W. Zhu and B. S. Wu, “An Efficient Algebraic Method for Computing Eigensolution Sensitivity of Asymmetric Damped Systems,” Journal of Sound and Vibration, Vol. 327, No. 3-5, 2009, pp. 584-592. doi:10.1016/j.jsv.2009.07.013

[20] L. Li, Y. Hu and X. Wang, “A Parallel Way for Computing Eigenvector Sensitivity of Asymmetric Damped Systems with Distinct and Repeated Eigenvalues,” Mechanical System and Signal Processing, Vol. 30, No. 7, 2012, pp. 61-67. doi:10.1016/j.ymssp.2012.01.008

[21] D. V. Murthy and R. T. Haftka, “Derivatives of Eigenvalues and Eigenvectors of a General Complex Matrix,” International Journal for Numerical Methods in Engineering, Vol. 26, No. 2, 1988, pp. 293-311.
doi:10.1002/nme.1620260202

[22] N. J. Higham, “Accuracy and Stability of Numerical Algorithms,” 2nd Edition, Siam, Philadelphia, 2002.
doi:10.1137/1.9780898718027